㈠ 逻辑推理:为什么中间的人戴白色帽子
题目:六位同学围坐着,中间一人眼睛被蒙住。各人头上戴一顶帽子,四个白的,三个黑的。因为中间一个挡住了视线,六个人都看不见自己对面的人戴的是什么颜色的帽子。现在让各人猜自己头上戴的是什么颜色的帽子。六个人在沉思着,一时猜不出来,中间被蒙住眼睛的人反而说话了:“我头上戴的帽子是白的。”他是怎么知道的呢?
解答:根据围坐的学生都在沉思,坐在中间的学生可以推测,三组对面而坐的人,一定是三个人头上戴白帽,三个人头上戴黑帽。那么,自己头上戴的当然是白帽子了。如果你一时无法解答这个难题,你可以假设自己是围坐的学生之一。你能看见五个人头上戴的帽子,如果你看到这五个人中有四个人戴的白帽,只有一人戴的是黑帽,就会猜到自己和对面的人都戴的黑帽,如果你看到只有两个人戴白帽,就会猜到自己和对面人都戴的白帽。只有当你发现还有一白一黑分别戴在你和对面人头上时,你可能就无法判断自己戴的是什么颜的帽子了。其他围坐的人也都在沉思着,那么,中间的人按这个逻辑推测,会得到自己戴白帽子的结论。
㈡ 帽子颜色(逻辑推理题)
如果自己戴的也是红色帽子,一共就两顶红色帽子,第三个人就能猜到自己就是黑色帽子了,但是那个人没有反应说明没有猜出来,说明自己不是红色帽子,那么就是黑色帽子了!
㈢ 逻辑推理:有5顶帽子,2顶红的,3顶黑的。拿其中3顶给3个人戴上(不让他们看到自己戴的帽子颜色),
假设甲乙丙三个人,如果是甲猜出的情况,分析如下:
情况1、甲乙都看到丙戴红帽子,如果乙是红帽子,甲就会很快猜出自己是黑帽子。
㈣ 推理游戏,答案是前两个人戴红帽子,后一个人戴黑帽子,问题看下面
一共有4种情况如下
3个黑帽子:不符合至少1个红帽子
2个黑帽子1个红帽子:红帽子视野中有2黑,于是他会立马想到规则至少1个红帽子,从而反应过来自己是红帽子,此种情况红帽子先宣布自己帽子颜色,2个黑帽子随后宣布。
1个黑帽子2个红帽子:红帽子视野中有1红1黑,他会想:如果我是戴的黑帽子,那另一个戴红帽子的人会参考第2种情况反应过来自己是戴的红帽子,但是他没有说话,所以我戴的一定是红帽子,此种情况2个红帽子的同时宣布自己帽子颜色,黑帽子随后宣布。
3个红帽子:红帽子视野中有2红,他会想:如果我戴的是黑帽子,那两个戴红帽子的人会参考第3种情况反应过来自己戴的是红帽子,但是他没有说话,所以我戴的一定是红帽子,此种情况3人同时宣布自己帽子颜色。
综上,第2种第3种和第4种是可以宣布自己帽子颜色的,但是依据题干所说大家宣布的顺序,所以排除第2种和第4种情况,是第3种:1黑2红
㈤ 白红帽子和黑帽子逻辑推理
C戴的是红颜色的帽子.
C可以看到A、B帽子的颜色,首先可以肯定,AB两人不可能同时戴着白帽子,否则C就会知道自己戴的是红帽子;其次,如果C戴的是白帽子,对A来说,同上理,他看定看到B戴的是红帽子,才会不知道自己戴的是什么颜色的帽子;最后,也是最关键的,对B来说,以A的逻辑推理,如果他看到C戴的是白帽子,而A又不知道自己帽子的颜色,则B就能肯定自己戴的是红帽子,因此与题目中B不知道自己帽子的颜色相驳,所以,C戴的是红颜色的帽子.
㈥ 帽子的颜色问题讲的是什么
(1)有三顶红帽子,两顶白帽子,现将其中三顶给排成一列纵队的三人每人戴上一顶,每人都只能看到自己前面的人的帽子,而看不到自己和自己后面人的帽子。从后往前问三人同样的问题:“你戴的帽子是什么颜色?”最后面的人回答说:“不知道。”接着中间的人也说:“不知道。”然而最后回答问题的站在最前面的人却做出了肯定的正确回答。问这个人戴的帽子是什么颜色?回答这个问题需要做正确的逻辑分析。
在提问后,最后面的人回答“不知道”,从中可断定以下事实:
前面两个人中至少有一个戴红色帽子。不然的话,如果前面两人均戴白帽子,而白帽子只有两顶,最后面的人就会知道自己戴红帽子,不会说不知道。这个事实中间的人也可得知,在此基础上他又回答“不知道”,那么一定是最前面的人戴着红帽子。不然的话,最前面的人若戴白帽子,因他与中间的人两人中至少有一个戴红帽子,那中间的人就一定戴红帽子了,中间的人也不会说不知道。于是,最前面的人戴红色帽子是正确结论。
在这个帽子的颜色问题中,戴着帽子回答问题的三个人应是聪明人,都能正确地进行逻辑推理,并作出正确的判断。如果有一个智力有问题,或胡乱猜测随便回答,那么整个事情就无法正确解释了。
此问题是一个传统的逻辑推理问题,人们经常利用这样的问题考察智力,既要看会不会推理,又要看整个推理过程是不是简明,还要看推理用的时间。在一个好的问题面前,可以充分显示人的思维能力。
中国著名数学家华罗庚对上述帽子的颜色问题作了改造,提出下面的问题:
(2)一位老师让三位聪明的学生看了一下事先准备好的五顶帽子:三顶白色的,两顶黑色的。然后让他们闭上眼睛,他替每个学生戴上一顶帽子,并把其余两顶藏起来,让学生睁开眼睛后各自说出自己戴的帽子的颜色。三人睁眼互相看了一下,踌躇了一会儿,觉得为难。继而异口同声地说自己头上戴的是白帽子。问他们是怎样推演出来的?先看戴帽情况,有两黑一白、两白一黑、三白共三种情况。
若第一种情况,戴白帽子的学生一看便能说出自己戴的帽子颜色,而实际上三人睁眼互相看了一下,踌躇了一会儿,没一人马上说出,这表明这种情况是不符合现实。
这样三人都明白其中至多只有一人戴黑帽子,如果有一人戴黑帽子,另外两人必会立刻说出自己戴着白色帽子,而不会踌躇且觉得为难。三人均为难说明谁也没有看见有人戴黑色帽子。那么三人戴的都是白色帽子。于是三位聪明学生便异口同声说出自己戴的帽子的颜色。
这个问题初看似乎感到条件不足,然而细一琢磨,“踌躇了一会儿,觉得为难,继后异口同声地说”里面涵义丰富,奥妙无穷。建立在这条件上,便可展开如上推理,层层深入,环环紧扣。
华罗庚推出这一改编的问题,让人深深体会到了数学大师的内在功力,其中表现出高超的思维技巧。
如果把人数增多,还可提出类似的问题:
(3)四个爱动脑筋的小朋友接受老师的智力测验,看谁能最快最准确地回答问题。老师让他们都闭上眼睛,给他们每人戴上一顶帽子,或者是白的,或者是蓝的。然后让他们睁开眼睛,告诉他们:“谁看到的白帽比蓝帽多就马上举手。然后各位说出自己戴的帽子颜色。”大伙互相看了一下(每个人都看不见自己戴的帽子,但能看清别人戴的帽子),谁也没举手,过了一会儿,也没有人说出自己戴的帽子颜色,其中一个叫小光的学生见大家都不说话,就猜出了自己头顶上的帽子颜色。问小光戴的是什么样的帽子。
再来分情况考虑。
如果恰有两个人戴白色帽子,另外两人都会看到两顶白帽,一顶蓝帽。他俩会同时举起手,而实际上无人举手,这表明在四个学生中最多只有一人戴白帽子。
如果只有一个学生戴白帽子,另外三人都会看到一顶白帽,两顶蓝帽,谁也不会举手。戴白帽子的人看到的是三顶蓝帽,也不会举手。三个戴蓝帽的人会想到:“我已看到一顶白帽子,如果我戴的也是白帽,就会有两人举手,而事实上没有举手,说明我戴的是蓝帽。”
可是,仍然没有人举手,这就说明一顶白帽也没有。四人戴的都是蓝帽子。
㈦ 1、题目:有甲、乙、丙、丁、戊五个人,每个人头上戴一顶白帽子或者黑帽子,每个人只能看见别人头上帽子的
E
假设甲说真话,他看见三白一黑,那他说真话,所以他戴白帽子,于是五个人里四顶白帽子一顶黑帽子。乙说他看见四顶黑帽子,由甲的话得知甲说的是假话,推断出乙是黑帽子。丙说他看见一白三黑,推断得出丙说假话,戴黑帽子,如果甲说的是真话,五个人中只有一人顶戴黑帽子,但是照这个逻辑推理,乙丙均戴黑帽子,根据甲说的话已经根据甲的话推导出的结论得出:甲不可能说真话。
假设乙说真话,乙戴白帽子,他看见四顶黑帽子,丙说他看见一顶白帽子,三顶黑帽子,丙说的就是实话,丙戴白帽子,如果丙戴白帽子,乙说他看见四顶黑帽子就产生矛盾,所以乙也不可能说真话。
甲和乙都戴黑帽子,而戊说他看见四顶白帽子,那戊说的也是假话,所以戊也戴黑帽子。
而丙只可能说真话,丙说他看见一顶白帽子三顶黑帽子,如果丙说假话,甲乙戊三人都戴黑帽子,只有丁戴白帽子是假话,那丁就要戴黑帽子,但是戊说了假话所以他戴黑帽子,推导出五个人都戴黑帽子。如果是这样的话,乙说他看见四顶黑帽子就是真的,但是根据推导得出乙说的是假话。所以丙只可能说真话。
丙说的话决定了丁戴什么颜色的帽子,丙说的是真话,所以丁必定戴白帽子。因此甲乙戊戴黑帽子,丙戴白帽子,没说话的丁戴也白帽子。
㈧ 三个人戴五帽 的逻辑推理
三个人,站成一排.有五个帽子,三个蓝色,两个红色,每人带一个,各自不准看自己的颜色.第一个人站在排的最后,他可以看见前二个人的帽子的颜色,第二个人可以看见前一个人的帽子的颜色.然后问第一个人带的什么颜色的帽子,他说不知道,然后又问第二个人带的什么颜色的帽子,同样说不知道,又问第三个人带的是什么颜色的帽子,他说我知道.问第三个人带的是什么色帽子?
是这个题吗?
第一个人纵观全局,然而他不知道自己的帽子颜色,所以第一个人看到的帽子不会是两个红色的,只会是一红一蓝或者两蓝;然后是第二个人,他已经知道第一个人说的话,然而依旧猜不出自己的帽子。如果第三个人是红帽子的话,第二个人就能说自己是蓝帽子,因为不能同时存在两顶红帽子,所以第三个人是蓝帽子。第三个人听了这两个人的话,做了以上思考,得出自己是蓝帽子。
㈨ 三顶黑帽子,两顶白帽的推理问题
A=白,B=黑,C=黑。
理由:
1.可以确定三人头上不可能有两顶白帽子.否则不是另一人看见有两顶白帽子,就可以确定自己不是白帽子,而是黑帽子了;
下面在不能有两顶白帽子的前提下进行推导:
2.C不可能是白帽子.假如C为白帽子,因为C的颜色是A和B都可以看到的,B听到A说自己无法判断自己帽子颜色后,B就可以判断出自己不是白色了,而是黑色了,这与题意不符。所以C是黑帽子;
下面在C是黑帽子且没有两顶白帽子的前提下推导:
3.C是黑帽子的情况下,可能是(1)A白B黑,(2)A黑B白,或(3)A黑B黑三种情况,这三种情况中,B黑的时候A有两种情况,B白的时候A只有一种情况,即A黑B白c黑。这样A看到的是一黑一白,无法判断自己帽子的颜色,B看到两顶黑色,也无法判断自己帽子的颜色。C看到的是一黑一白,C想:“如果自己是白色的,A就能看到两顶白色的(B和C帽子的颜色),A就可以判断自己是黑色的了。现在A无法判断,所以自己一定是黑色。”也就是C在听到A的话之后就能判断自己帽子颜色了,而不要等到B说话。这与题中所述不符,所以B也不可能是白的,即B是黑的。
下面在B黑C黑的情况下讨论:
4.剩下两种情况,A白B黑C黑或A黑B黑C黑。从C的角度考虑,C想:“B看到A是黑色的,不管自己是黑是白B都无法判断他自己帽子颜色,所以我也不能从B的话中判断出自己帽子颜色。同时我看到两顶黑色,也无法判断自己帽子颜色,所以我总是判断不出自己帽子的颜色。”这与题中情况不符,所以不可能都是黑色,所以只剩一种情况:A白B黑C黑。
从上可以判断出唯一的可能是A白B黑C黑。
5.下面再来验证一下是不是符合题意,即论证是否是得出题中事实的充分条件:
在A白B黑C黑的情况下,A看到的是两顶黑色,所以无法判断自己帽子的颜色;B看到一黑一白,也无法判断自己帽子的颜色。C看到一白一黑,本来也无法判断自己帽子颜色。但是听了B的话后,C想:“假如自己是白色,B再看到A的白色,那么B看到两顶白色,那B就可以判断自己肯定是黑色了。现在B不能判断,那么自己一定是白色。”这样C就判断出自己帽子的颜色了,与题中所述相符.
所以此题的答案是:A=白,B=黑,C=黑。
推理完毕!
㈩ 头上戴什么颜色帽子的推理问题
白色,如果中间人头顶是黑的 其他人中必有一对人都是白色的 那么这两个人可以看到3顶黑的 那就肯定知道自己是白的了 所以只有中间人是白的的时候 其他人才要想自己是什么颜色的